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Abstract

The aim of our project is to identify the aspects that make
complex machine learning models more accurate and ro-
bust than basic models for real-time 3D point cloud classi-
fication. The paper discusses the potential applications of
real-time 3D point cloud classification, such as autonomous
driving, robotics, augmented reality, gaming, and virtual re-
ality. The limitations of the basic model PointNet and the
advantages of complex models such as DGCNN are also
highlighted. The project reviews various aspects such as
datasets, preprocessing techniques, model structure, and
loss functions to evaluate the performance of the mod-
els. The results of the study could be useful for future re-
searchers who aim to create new models with higher accu-
racy for 3D point classification

1. Introduction/Background/Motivation

Real-time 3D point cloud classification has various po-
tential uses in real-time applications such as autonomous
driving, robotics, augmented reality, gaming, and virtual
reality. In autonomous driving, real-time 3D point cloud
classification is important for detecting and classifying ob-
jects on the road such as vehicles, pedestrians, and traffic
signs. In robotics, it can be used for perception and interac-
tion with the environment in real time. Real-time 3D point
cloud classification can also create interactive augmented
reality experiences, motion tracking, gesture recognition,
and virtual object interaction in gaming and virtual reality
applications. Overall, real-time 3D point cloud classifica-
tion is an essential task for analyzing complex 3D scenes
and structures in real-time, with practical uses in various
applications.

Several machine learning models exist for 3D point
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cloud classification such as PointNet, a basic model that
uses multi-layer perceptrons (MLPs) and max-pooling op-
erations. It has some limitations, such as struggling with
local features and missing out on the geometric relation-
ships between points. On the other hand, complex models
such as DGCNN use a dynamic graph CNN to capture local
features and relationships between points, making it more
robust and accurate. However, these complex models do
not provide a proper justification or explanation of what as-
pects or additions to these models made them more robust
and capable of achieving higher accuracy compared to the
PointNet model. The aim of our project is to identify these
aspects by checking the model performance before and af-
ter adding them to the model. It would be helpful for future
researchers to make informed decisions while trying to cre-
ate new models that provide higher accuracy for 3D point
classification.

For this project, three different datasets were used i.e.,
ModelNet10, ModelNet40, and KITTI. The most important
aspect of the dataset for this project is the distribution of
categories, as it allows us to evaluate the performance of
the models on a diverse range of objects. The code for
this work is available at https://github.com/prasbathala/3D-
Point-Cloud-Classification-Analysis

2. Related Works

In geometric data processing and analysis, tasks such as
segmentation, classification, and matching require an un-
derstanding of local similarities between shapes. To estab-
lish this resemblance, feature descriptors representing local
geometric structure are traditionally used. There are numer-
ous publications in computer vision and graphics that pro-
pose local feature descriptors for point clouds, which are
suitable for various problems and data structures.

Shape analysis has been an active area of research, and
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in this regard, extrinsic and intrinsic descriptors have been
widely used to represent 3D shapes. Extrinsic descriptors
are usually derived from the shape’s 3D coordinates and
include shape context [2], spin images [|2], integral fea-
tures [19], distance-based descriptors [17], point feature
histograms [30], and normal histograms [37], among oth-
ers. Intrinsic descriptors, on the other hand, treat the shape
as a manifold with a discretized mesh or graph and are in-
variant to isometric deformation. Spectral descriptors, such
as global point signatures [29], heat, and wave kernel sig-
natures [1], and their variants [5], are examples of intrin-
sic descriptors. Recently, some researchers have employed
machine learning techniques to enhance the performance of
standard descriptors, such as those proposed by [32].

While convolutional neural networks (CNNs) [14] have
demonstrated remarkable success in the field of computer
vision, adapting these methods to geometric data poses
unique challenges due to the lack of an underlying grid
structure. Researchers have therefore sought to develop new
building blocks to replace the traditional convolution and
pooling operations or to modify these operations to suit the
gridless nature of geometric data. This review will provide
an overview of the current state of research in this field, in-
cluding the various approaches that have been proposed for
deep learning on geometry.

Unlike images, geometric data lacks an underlying grid,
which requires the development of new building blocks
to replace convolution and pooling or adaptation to a grid
structure. One approach to address this is to place geomet-
ric data onto a grid through view-based and volumetric rep-
resentations, as demonstrated in [36], [40] or their combina-
tion in [26]. Recently, PointNet [24] has exemplified a class
of deep learning architectures for non-Euclidean data on
graphs and manifolds, termed geometric deep learning [4].
This approach dates back to early methods for constructing
neural networks on graphs [3 1] and has been improved with
gated recurrent units and neural message passing. Alterna-
tive definitions of non-Euclidean convolution employ spa-
tial rather than spectral filters, as shown in [21] through the
Geodesic CNN (GCNN), which is a deep CNN on meshes
that generalizes the notion of patches using local intrinsic
parameterization. Follow-up work has proposed different
local charting techniques using anisotropic diffusion [3] or
Gaussian mixture models [23]. In other works, such as
[11], a differentiable functional map layer was incorporated
into a geometric deep neural network, allowing for intrinsic
structured prediction of correspondence between nonrigid
shapes.

By embedding the shape in a domain with shift-invariant
structure, such as the sphere [34], torus [20], plane [6],
sparse network lattice [35], or spline [8], the final class of
geometric deep learning methods tries to undo a convolu-
tion operation.

Additionally, geometric generative models are an im-
portant aspect of non-Euclidean geometric deep learning.
These models aim to generalize autoencoders, VAEs, and
GANSs to non-Euclidean settings, where there is a lack of
canonical order between the input and output vertices. This
necessitates the need to solve an input-output correspon-
dence problem. In 3D mesh generation, the mesh is typi-
cally assumed to be given, and the vertices are canonically
ordered [13] proposed SurfaceNets based on the extrinsic
Dirac operator for mesh generation. For point clouds, var-
ious generative architectures have been suggested by [7],
[15], and [42]. Intrinsic VAEs have been used by [18] and
[28] for shape completion and 3D face synthesis, respec-
tively.

3. Dataset

To evaluate the SOTA methods on different architecture
used for 3D Point Cloud Classification, we evaluate two
datasets namely, ModelNet10, ModelNet40

3.1. ModelNet10

ModelNet10[41] is a subset of the ModelNet40 dataset
and is often used as a benchmark dataset for 3D object
recognition tasks, especially in cases where computational
resources are limited. ModelNetl0Q contains 4899 CAD
models from 10 object categories: bathtubs, beds, chairs,
desks, dressers, monitors, nightstands, sofas, tables, and toi-
lets. Like ModelNet40, each object is represented as a 3D
point cloud or a mesh, and the dataset is split into training
and testing sets. The training set contains 3991 models and
the testing set contains 908 models.

3.2. ModelNet40

ModelNet40 [41] is a widely-used dataset in computer
vision research for 3D object recognition and classification.
It was introduced in 2015 and has become a benchmark
dataset for evaluating 3D deep learning algorithms. The
dataset consists of 12,311 CAD models from 40 object cat-
egories, such as chairs, tables, cars, airplanes, etc. Each
object is represented as a 3D point cloud or a mesh, and the
dataset is split into training and testing sets. The training
set contains 9,843 models and the testing set contains 2,468
models. The point cloud representation of each object is
generated by uniformly sampling points on its surface. The
point clouds are normalized to a unit sphere and represented
as a set of (X, y, z) coordinates and associated (r, g, b) color
values.

4. Methods:
4.1. PointNet

Point clouds, which are collections of 3D points reflect-
ing the shape of an item or a scene, are processed using



the well-known deep learning architecture PointNet [24].
There are three main components in the PointNet Architec-
ture: Feature Extraction, Global Feature Aggregation, and
Classification. For feature extraction, Multi-layer Percep-
tron (MLP) is used to learn from each point in the data.
Two sets of MLP are used in the architecture, the first set
will have local features representation and the second set
will extract a dense representation of the global features.
The global features are then aggregated with max pooling
across all the points. The aggregated vector is then sent to a
fully connected layer for the task of classification. The im-
plementation of the Pointnet is taken from this github repos-
itory. https://github.com/charlesq34/pointnet

4.2. Dynamic Graph Convolution Neural Network
(DGCNN):

The current method being employed is inspired by the
”Dynamic Graph CNN for Learning on Point Clouds”
model [38]. It combines elements from PointNet, Convo-
lution and graph neural networks to utilize local geometric
structures through the creation of a local neighborhood K-
nn graphs to process the point cloud for classificaion. The
method computes an edge convolution on the edges linking
neighboring points with the core point. Unlike conventional
graph convolution networks, the graph gets dynamically
updated after every layer of the EdgeCNN. This enables
the diffusion of non-local information throughout the point
cloud, enhancing the model’s ability to capture complex
patterns and relationships. The implementation of DGCNN
base was taken from https://github.com/WangYueFt/dgcnn.

4.2.1 Edge Convolution:

Edge Convolution is a form of Convolution that performs a
similar operation to Convolution on images. In the DGCNN
model, a set of n points in a point cloud space are chosen,
where each point is represented by a directed graph with its
nearest K neighbors as nodes, and edges that connect each
node to its neighbors, represented as an edge feature F;;.
The points are represented by their coordinates, which are
used as features.

Let X = {x1,x2, ...,z } represent the n points, where
each point has three features (x,y, z) coordinates. A di-
rected graph G = (V, E) is created to capture the local
structure of the point cloud, where V' = {1,...,n} repre-
sents the vertices, and £ C V x V represents the edges.
A graph is created based on the k-nearest neighbor (k-NN)
algorithm, where each node is connected to its k-nearest
neighbors and a self-loop is included for each node.

The EdgeConv captures local geometric structure while
maintaining permutation invariance. Edge features are com-
puted based on a non-linear function H(6), where F;; =
H(x;,2;), and H is parametrized by a set of learnable pa-

rameters. The output of EdgeConv at the i-th vertex is de-
fined in (4). The EdgeConv applies a channel-wise symmet-
ric aggregation operation on the edge features associated
with all the edges emanating from each vertex, resulting in
an aggregated feature vector for each vertex. The aggrega-
tion used in the above is max in (4). The performance and
robustness of the model are dependent on the choice of H
and the aggregation operation.

In the current method, the employed H, edge feature ex-
traction and final output of EdgeConv equations are:
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These equations can highly be effective in capturing both
the global and local features of graph data. The equation
1 of H(z;,z;), explicitly combines global shape structure
with local neighborhood information. The equation 2 of
€}jm» is a shared MLP that effectively extracts edge fea-
tures. The equation 3, x;m, captures the most salient fea-
tures by taking the maximum over all edge features. To-
gether, these equations make EdgeConv a highly effective
technique for processing graph data.

5. Surveyed Approaches

This project aims to delve into the State-of-the-Art
(SOTA) models for point cloud classification and identify
the crucial factors that impact their performance. In par-
ticular, we seek to analyze the key ingredients for point
cloud classification and understand what matters the most
in achieving accurate results. To achieve this goal, we draw
on the insights from a survey conducted by Ankit Goyal et
al. in [9], which explores the impact of controlling factors
independent of the network architecture on the point cloud
classification task.

In this work, we aim to consider model-dependent and
independent factors that would impact point cloud classi-
fication, including the choice of the dataset, preprocessing
strategies, model structure, and loss functions. These fac-
tors play a critical role in determining the performance of
point cloud classification models, and our analysis aims to
shed light on the relative importance of each factor. We
believe that this work will contribute to a better understand-
ing of the key ingredients for achieving high performance
in point cloud classification and help researchers and prac-
titioners in developing better models for this task.

5.1. Dataset

The choice of the dataset is an important factor that can
significantly impact the performance of point cloud classi-
fication models [10]. Some of the reasons are :
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Table 1. Performance of various architectures on different variations (Numbers in Overall accuracy

Dataset Data Augmentation Model Selection Loss Function Architectural Changes Architecture
ModelNet10  ModelNet40 Final BestTest CE Smooth Loss PointNet DGCNN
v Rotation, Jitter, Shuffle v v None 49.18
Addition of two conv1D layers
v Rotation, Jitter, Shuffle v v Remove Batch Normalization 40.12
v Jitter, Shuffle v v Dropout rate to 0.5 49.56
v Rotation, Jitter, Shuffle v v removal of two conv2D layers 49.78
v Jitter, Shuffle v v None 81.23
v Rotation, Shuffle v v Dropout to 0.5 87.53
Adding two convolutional layers
v Jitter, Shuffle v v Dropout to 0.3 88.32
v Translate, Jitter v v k =10 points 82.75
v Shuffle, Jitter v v k =15 points 81.76
v Translate, Jitter v v k = 10 points, add edge conv 93.53
v Translate, Jitter v v k =20 points 85.64
v Translate, Shuffle, Jitter v v k =10 points 94.53

1. Generalization: A good dataset for point cloud clas-
sification should be representative of real-world sce-
narios and contain a wide variety of object shapes,
sizes, and orientations. The model should be able to
generalize to new and unseen data, and this ability
is highly dependent on the quality and diversity, the
model might not be able to learn the necessary features
to accurately classify the new data.

2. Bias: The Bias in the dataset can significantly im-
prove the performance of the model, especially if the
training data is not representative of the target popu-
lation. For example, if the training dataset contains
only a few specific object types or is biased towards
certain viewpoints, the model may not be able to clas-
sify objects accurately from different viewpoints or of
different types.

3. Data Augmentation: Augmenting the dataset by ap-
plying transformations such as rotation, scaling, and
translation can increase the diversity of the training
data and improve the model’s performance. Therefore,
the choice of the dataset should also consider whether
it is amenable to data augmentation.

In this work, we will evaluate two datasets ModelNet10,
and ModelNet40 [41]

5.2. Processing

Input Points: The number of input points is an im-
portant factor in point cloud classification. If the number of
points is too low, then the model may not have enough infor-
mation to accurately classify the object, and if it is too high,
then the model may become computationally expensive and
may overfit to the training data. It is required to select the
optimal number of points. PointNet [24] uses a fixed 1024
points per object to train the network. This fixed point strat-
egy simplifies the point cloud classification and helps re-
duce the computation time required to train the network. On

the other side, DGCNN [38] uses a resampled points strat-
egy during the training. Unlike using a fixed set of points,
DGCNN randomly samples a subset of points from the in-
put point cloud during each epoch. This approach exposes
the model to more than 1024 points per object during the
training process, which can improve the model’s ability to
handle varying point cloud densities and noise levels.

Data Augmentation: For the point cloud classification,
there are various data augmentation strategies like jittering,
random translation, random scaling, and random rotation
along the y-axis. Different methods use different combina-
tions of these augmentations. PointNet uses all the above
mentioned augmentations. However, considering that the
objects in ModelNet40 are aligned, random rotation along
the y-axis will severely penalize the performance of the
model. So, the DGCNN on the other hand will not employ
random rotation. DGCNN only uses random translation and
rotation.

Loss Function: The Cross-Entropy (CE) loss func-
tion is commonly used in point cloud classification tasks.
However, DGCNN uses a modified version of CE called
the smooth-loss function, where the ground truth labels are
smoothed out before calculating the CE. This smoothing
technique helps to prevent overfitting by reducing the im-
pact of noisy or mislabeled data points. The use of smooth
loss has been shown to improve the performance of all net-
work architectures in point cloud classification tasks. This
is because it provides a more robust way of training the
model by reducing the sensitivity to individual data points.
Smooth-loss is particularly useful in scenarios where the
dataset contains noisy or mislabeled data.

Selected Model for Testing: Different methods employ
different ways of selecting the final model for testing. Point-
Net uses the final converged model to evaluate the test set,
and they create a validation set from the training set to tune
the number of epochs. The model is retrained on complete
training set to the tuned number of epochs. This strategy is
called fixed model selection. On the other hand, DGCNN



evaluates the model on the test set after every epoch during
the training and uses the best test performance as the final
performance. This strategy is called Best Model Selection.
Both strategies have their advantages and disadvantages. Fi-
nal Model Selection is more computationally efficient since
it requires training only the model once. However, it may
result in suboptimal performance if the number of epochs
is not tuned correctly. Best Test Model selection requires
more computational resources since the model is evaluated
on the test set after every epoch, but it ensures that the final
performance is the best possible.

5.3. Model Structure

CNN s are particularly well-suited for processing 3D data
such as point clouds [16] because they can learn hierar-
chical representations that capture spatial relationships and
geometric structures in the data. By using a deep learn-
ing model for point cloud classification, we can leverage
its ability to extract relevant features from the input data
and produce accurate predictions. Different model struc-
tures and hyperparameters to optimize the performance of
the model were tested such as adjusting the number of con-
volutional layers, the filter sizes, the activation functions,
the learning rate, and the batch size to find the optimal con-
figuration that produces the best results.

1. Modifying layers: The original DGCNN architecture
for classification utilizes four EdgeConv layers with
LeakyReLU activation and batch normalization. To in-
vestigate the effect of increasing depth and changing
activation functions on performance, we modified the
architecture by adding an additional EdgeConv layer
and replacing LeakyReLU with ReLU activation. Sim-
ilarly, PointNet was modified by adding and removing
the Convolution layers from the model architecture.
Our modifications aim to explore the impact of net-
work depth and activation functions on achieving high
accuracy in fewer epochs.

2. Modifying Hyperparameters: The last two fully-
connected layers have a dropout rate of 0.5. The
value of k, the number of nearest neighbors, is cho-
sen through a validation set. The model is first trained
on 80% of the training data while using the remaining
20% for validation to search for the optimal k value.
The original PointNet model is implemented using a
dropout rate

6. Experiments and Results

Implementation Details:

Our study involves the implementation of various mod-
els and their variations, and we have utilized PyTorch and
Tensorflow frameworks for this purpose. Whenever pos-

Base Model of DGCNN

Epoch:

Figure 1. DGCNN Base Model

sible, we have reused the official code for these frame-
works. Additionally, we have employed the official ver-
sion of DGCNN, and since PointNet is officially available
in Tensorflow, we have used this framework for any mod-
ifications made to it in our study. In order to analyse the
performance of the models, we have computed the Mean
Accuracy and Overall accuracy for the classification task.

6.1. Architecture Depended Factors:

In this study, we aimed to evaluate the impact of archi-
tectural changes on the performance of our model. Specifi-
cally, we investigated the effect of different activation func-
tions and network depths on the model’s robustness. To
this end, we conducted experiments where we varied the
depth of the model while using either LeakyRelu or Relu
activation functions. We plotted the accuracy vs epochs
curve to analyze the behavior of the model for all the cases
considered. All the experimental configurations underwent
training for 50 epochs. The K-value (20), the Data Aug-
mentations(Translatem Jitter) and Loss Functions(Smooth
Loss) utilized were selected based on the results presented
in table(1). To sample each test point cloud, we used 1024
points, and we employed SGD as the optimizer. The learn-
ing rate for SGD was initially set to 0.1 and gradually re-
duced using cosine annealing until it reached 0.001.

6.1.1 Case 1: Base model

In this case, the original model from the DGCNN paper is
considered. The plot of Accuracy vs Epochs can be seen in
figure 1. From the table 2, the original model implemented
achieved an accuracy of around 88.9% accuracy.

6.1.2 Case 2: Base model with Relu Activation func-
tion

In this case, the original model with RELU as activation is
considered instead of LeakyRelu from the DGCNN paper is
considered. The plot of Accuracy vs Epochs can be seen in
figure 2. When the ReLU activation function is introduced
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Figure 2. DGCNN with Relu Activation function

Model of DGCNN with Increased Depth

Esochs

Figure 3. Modified DGCNN with increased depth

Model of DGCNN with Increased Depth and Relu Activation

Epochs

Figure 4. Modified DGCNN with increased depth and Relu Acti-
vation function

into the model, The accuracy was around 83.45%, where
we can see not much improvement in the model.

6.1.3 Case 3: Modified model with increased Depth

In this case, the modified DGCNN model where an extra
EdgeConv is added is considered. The plot of Accuracy vs
Epochs can be seen in Figure 3.

6.1.4 Case 4: model with increased Depth and Relu ac-
tivation function

In this case, the modified DGCNN model where an extra
EdgeConv is added along with modification of LeakyRelu
to Relu is considered. The plot of Accuracy vs Epochs can
be seen in Figure 4. when the depth of the model was in-

creased, we can see that there is a significant improvement
in the model.

From the above results, it can be seen that Case 3 out of
all cases gave the best accuracy when tested on ModelNet40
test data with 89.16 % being the highest Mean -accuracy. As
expected the model with increased depth gave better results,
due to its ability to further learn the global representation
features better.

Also, we have analyzed the modified case 3 model with
the PointNet model and other widely used models for the
classification of point cloud data.

Table 2. Classification results on ModelNet4(

Method Accuracy
3DShapeNets [41] 84.7
VoxNet [22] 85.9
Subvolume [25] 89.2
ECC [33] 87.4
PointNet [24] 89.2
PointNet++ [27] 90.7
DGCNN Base Model [38] 88.9
DGCNN with Relu Activa- 90.7

tion Function
Modified DGCNN with in- 92.13
creased depth
Modified DGCNN with in- 91.9
creased depth and Relu Ac-
tivation function

From table 1 it is clear that the Smooth loss functions
provide better performance compared to the cross entropy
loss function which holds true with respect to our hypothe-
sis that it is capable of handling noisy and mislabeled data.
However, adding more convolution layers or removing the
layers did not show any significant impact on the model per-
formance based on the obtained results. Similarly, data aug-
mentation techniques such as rotation, and jitter showed a
minute improvement in the model performance but are not
significant enough to compensate for the additional compu-
tation it adds to the model.

The findings from table 2 indicate that the model’s accu-
racy showed a slight improvement compared to the baseline
when the modifications were made. These results confirm
our hypothesis that the performance and accuracy of mod-
els are significantly impacted by changes in the activation
function and architecture.

7. Conclusion

In conclusion, this project aimed to investigate the im-
pact of different factors on the performance of 3D point
cloud classification models. Specifically, we focused on
the effects of the dataset, preprocessing, model structure,
and loss function on model accuracy. Our results demon-



strated that the choice of the dataset can have a signifi-
cant impact on model performance, with larger and more
diverse datasets generally leading to better accuracy. Pre-
processing techniques, such as data normalization and aug-
mentation, can also improve model performance by increas-
ing the amount of training data and reducing the impact of
noise. Additionally, model architecture and loss function
were found to be not adding more value to the model in
achieving high accuracy. Specifically, the use of 1D convo-
lutional layers was tested. Overall, our findings suggest that
a combination of these factors is necessary for achieving
high accuracy in 3D point cloud classification, and further
research is needed to identify optimal combinations.

8. Future Works

This study can be extended by analyzing more aspects
and different techniques under each of these aspects. It can
be achieved by analyzing more complex models such as the
RS-CNN, 3D2SeqViews, and MLVCNN which are proven
to be having higher accuracy for 3D point cloud classifica-
tion. While the current report only focussed on CNN archi-
tecture, this work can be extended to identify the impact of
other architectures on model performance.
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Student Name Contributed Aspects

Details

Nigam Katta

Prasanth Bathala ModelNet10 dataset [41] and DGCNN [39]

Janavi Khochare ModelNet40 [41] and PointNet [24]

Hemanth Tammana ModelNet10 [41] and PointNet [24]

ModelNet40 dataset [4 1] and DGCNN [39]

Analyzing the dataset, conducting a literature review,
fine-tuning hyperparameters, designing and implement-
ing the DGCNN architecture, and running multiple ex-
periments to evaluate its effectiveness. Contributed to re-
port writing.

Investigating the dataset, performing a survey of rele-
vant literature, optimizing hyperparameters, designing
and implementing the DGCNN architecture, and con-
ducting a series of experiments to evaluate its perfor-
mance on 3D object classification.Assisted in the writing
of the report.

Exploring the dataset, conducting a literature review, tun-
ing hyperparameters, comprehending and implementing
the PointNet architecture, and performing various exper-
iments to determine the significant preprocessing and ac-
tivation functions that enhance the accuracy of 3D object
detection. Contributed to report writing

Analyzing the dataset, reviewing relevant literature, fine-
tuning hyperparameters, grasping the PointNet architec-
ture, and executing multiple experiments to identify the
crucial preprocessing and activation functions that con-
tribute to improving the precision of 3D object detection.
Assisted in the writing of the report.

Table 3. contributions of team members.
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Figure 5. PointNet Architecture [24]
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