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ABSTRACT 
Alzheimer's Disease (AD) is a neurodegenerative 

disorder that leads to cognitive decline and is the leading cause of 
dementia in the elderly. Accurate and early diagnosis is crucial to 
improve patient outcomes, and computer-aided diagnosis is 
becoming an essential tool for screening at-risk individuals. In this 
study, we propose a deep-learning based classifier that can classify 
multi-modal imaging data. Our approach involves using a modified 
ResNet50 architecture, combined with late fusion of Magnetic 
Resonance Imaging (MRI) and Positron Emission Tomography 
(PET) images, to classify patients into one of three stages of AD. 
We also developed two separate models to identify the risk of AD 
and monitor disease progression. By addressing these challenges, 
our research aims to provide clinicians with advanced tools for 
accurate diagnosis and effective monitoring of disease progression, 
ultimately contributing to improving patient outcomes and 
advancing our understanding of this devastating disease.  
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1 Introduction 
Alzheimer's Disease (AD) is a progressive 

neurodegenerative disorder that affects cognitive function and daily 
activities, with a significant impact on patients and caregivers [1]. 
Current estimates indicate that over 50 million people worldwide 
may have AD or other forms of dementia, and the total cost of 
healthcare for individuals with dementia aged 65 and over has 
reached $305 billion in 2020 [2]. By 2050, the number of AD 
patients is projected to reach 115 million, underscoring the critical 
need for early and accurate diagnosis and treatment of this 
condition. 

The pathogenesis of AD is not fully understood, but it is 
thought to be linked to the accumulation of extracellular amyloid-
β (Aβ) and neurofibrillary tangles, resulting in neuronal and 
synaptic loss or damage [3]. Neuropsychological and neuroimaging 
examinations are the primary clinical tools for assessing AD [4]. 
Computer-aided diagnosis is an essential tool for screening at-risk 
individuals. Structural MRI is a widely used neuroimaging 
technique in AD diagnosis due to its high resolution for soft tissue 
and ability to display brain anatomical details[5]. PET imaging 
plays a crucial role as a functional technique, enabling clinicians to 
observe human brain activities with particular applications in early 
AD detection[6, 7, 8]. 

To address the challenges associated with accurately 
predicting AD in patients and identifying the risk of AD and 
monitoring disease progression, we propose a deep-learning-based 
approach that can classify multi-modal imaging data. Our approach 
involves using a modified ResNet50 architecture, combined with 
late fusion of MRI and PET images, to classify patients into one of 
three stages of AD. Additionally, we developed two separate 
models to predict the risk of AD at the next time step and for future 
multiple time visits using an encoder-based approach and an 
encoder-decoder approach, respectively. For disease progression, 
we utilized Electronic Health Record (EHR) data of the patient. 



 
 

Integrating multiple data types can improve AD 
prediction. Causal inference can identify risk factors, aiding 
targeted interventions. Real-time ML models can aid in 
personalized treatment plans, leading to better patient outcomes. By 
addressing both of these challenges, our research aims to provide 
clinicians with advanced tools for accurate and early diagnosis of 
AD, as well as effective monitoring of disease progression. 
Ultimately, our hope is that this work will contribute to improving 
patient outcomes and advancing our understanding of this 
devastating disease. 
 

1.1 Previous Related Works 
In terms of machine learning models, previous studies 

[23] have implemented classification methods based on 
combination of multi-model 3D convolutional networks to learn the 
various features from MRI brain images. The features obtained 
from the 3D CNN network are combined with the set of features 
extracted using 3D convolutional autoencoders (3D CAEs). The 
model structure was complex involving the usage of multiple 
architectures and was implemented only for normal and AD 
patients. To address this issue, recent studies [22] have explored the 
use of more efficient models such as UNet for AD classification 
and prediction. However, these models often require a large 
number of parameters and are computationally expensive. In this 
study, we propose a novel approach for AD classification that 
combines both MRI and PET imaging modalities. Specifically, we 
use a modified version of ResNet with fewer parameters than 
previous studies, while achieving high accuracy. Our results 
demonstrate the potential benefits of multimodal imaging and 
efficient machine learning models for AD diagnosis and prediction. 
While most of the previous research works highly depend on image 
preprocessing steps such as skull stripping, segmentation and 
registration which requires domain expert knowledge, our proposed 
method does not require any complex preprocessing steps to get 
high accuracy. 
 

Hu et. Al. discussed about using the latest state-of-the-art 
transformers and recurrent network with attention, and has 
achieved around 77.30% accuracy which is pretty less compared to 
benchmark results till now, which indicates the MRI biomedical 
images are not sufficient enough to train the transformer. Guan et.al 
discussed the prediction of Alzheimer's stages using multimodal 
data (MRI, EHR, SNP) and gave details about the preprocessing 
methods for all modalities [9]. Using 3D Brain MRI images as input 
for 3D CNN architectures offer better transferability of the CNNs 
and have shown improvement in performance and better 
generalization ability [10]. Other studies include a deep 
convolutional neural network (CNN) based method, could 
accurately predict cognitive decline in patients and achieve better 
generalization[11].  

 
As far as classification, there is significant research going 

to estimate the risk of AD in the future. Previous studies have used 
single-modality magnetic resonance imaging (MRI) or positron 
emission tomography (PET) to classify and predict AD 
progression. However, the limitations of single-modality imaging, 
such as low sensitivity and specificity, have motivated the 
development of multimodal approaches. 

 

In the study by [12], unsupervised and supervised 
machine learning techniques were applied to the ADNI dataset to 
learn the progression and clinical subtypes of Alzheimer's disease. 
The study formed clusters of people with varying levels of 
Alzheimer's disease progression and classified them into low, 
moderate, and high progression zones. However, the approach 
lacks personalization as the output for each cluster indicates the 
progression level of the cluster, rather than individual patients. 
Therefore, further research is necessary to incorporate more 
complex and personalized machine learning approaches for 
Alzheimer's disease progression modeling. 

 
The study by [13] introduces a novel external memory 

network (EMN), TC-EMNet, for disease progression modeling 
using temporal clustering and external memory mechanisms to 
capture temporal patterns and dynamics. TC-EMNet leverages a 
variation autoencoder framework and a memory network to address 
data irregularities and long-term dependency issues in recurrent 
neural networks. Although the proposed approach compared to 
baseline studies, it does not compare to human-effective methods, 
which is crucial in medical data. Therefore, further research is 
required to evaluate the effectiveness of the proposed method 
against human-effective methods and address the data limitations 
in medical applications. Overall, the study presents a promising 
approach for disease progression modeling, but further research is 
necessary to validate its effectiveness in medical applications. 

 
In the quest for early diagnosis and intervention of 

Alzheimer's disease (AD), the study by [14] presents two deep 
learning architectures, PPAD and PPAD-AE, designed to predict 
the progression of AD using MRI, cognitive tests, and PET 
biomarkers. The study utilizes long short-term memory (LSTM) 
and gated recurrent unit (GRU) to model the temporal sequence of 
data and an autoencoder/decoder to predict AD progression. 
However, the paper is limited in its use of restricted data and 
overlooks crucial features such as the time between patients' visits. 
To address these limitations, the present study aims to improve the 
accuracy of AD progression prediction by incorporating 
hyperparameter tuning and considering the time between patients' 
visits as a feature. Overall, the paper presents a promising approach 
to predicting AD progression, but further advancements are 
necessary to address the limitations in the data and features used 
for modeling. 

2 Methodology and System Design 

2.1 Dataset 

The data utilized in this project were obtained from 
theAlzheimer’s Disease Neuroimaging Initiative (ADNI) dataset 
(https://adni.loni.usc.edu/). ADNI is a longitudinal multicenter 
study that aims to develop clinical, imaging, genetic, and 
biochemical biomarkers for the early detection and tracking of AD. 
To promote AD diagnosis and treatment, ADNI makes all data and 
samples available for scientists worldwide (27, 28). The dataset 
contains multimodal data analyzes mainly from North American 
participants and covers different AD stages. For this study, we 
selected subjects who had both T1-weighted MRI and FDG-PET 
scans captured in the same period. MRI scans labeled as MPRAGE 
were chosen as they are considered to be of the highest quality. The 

https://adni.loni.usc.edu/


 

clinical data in the ADNI dataset consists of Demographics, 
Cognitive Assessment Scores, and MRI Biomarkers. The 
Distribution of the data among the three modalities across the three 
classes is shown in the Table 1 

 Table 1: Distribution of classes 

 CN MCI AD 

MRI 200 396 133 

PET 393 786 205 

EHR 1900 1574 791 

 

Fig 1. Venn diagram showing the data distribution 

 

2.1.1 MRI Data 
 

MRI imaging has become an essential tool for 
Alzheimer's disease (AD) research, providing non-invasive and 
accurate measurements of structural and functional changes in the 
brain. Alzheimer's disease is a progressive neurological disorder 
that affects memory, thinking, and behavior, and is characterized 
by the accumulation of beta-amyloid plaques and tau tangles in the 
brain. MRI imaging has been used to detect and track these 
pathological changes, as well as to identify structural changes 
associated with disease progression. Thus, it is used as an effective 
representative of Alzhimer’s disease progression [16]. 

One of the most used Structural MRI [17] sequences in AD 
research is the T1-weighted sequence, which provides high-
resolution images of brain anatomy. T1-weighted images can be 
used to detect changes in gray matter volume, which has been 
shown to decrease in AD patients as the disease progresses. MRI 
imaging can also be used to visualize beta-amyloid plaques and tau 
tangles directly, using specialized imaging agents that bind to these 
proteins. In recent years, MRI MP Rage (Magnetization Prepared 
Rapid Gradient Echo) imaging has emerged as a promising 
technique for AD research. MP Rage is a T1-weighted imaging 
sequence that uses a magnetization preparation step to increase 
contrast between gray and white matter. This technique has been 
shown to provide superior image quality and better detection of 

small changes in cortical thickness compared to conventional T1-
weighted imaging. 
 
 

2.1.2 PET Data 

PET imaging is a powerful tool for visualizing and 
measuring biological processes in living tissues, including the 
brain. PET imaging with the radiotracer AV45 has become an 
essential tool for Alzheimer's disease (AD) research [18], as it helps 
to detect and track the accumulation of beta-amyloid plaques in the 
brain, a hallmark feature of AD. AV45 PET imaging has been used 
to study the progression of beta-amyloid deposition in the brain 
over time, identify individuals at risk for developing AD, and 
monitor the effects of interventions aimed at reducing amyloid 
accumulation. 

AV45 is a radiotracer that binds specifically to beta-
amyloid plaques and emits positrons that can be detected by PET 
scanners. By measuring the concentration of AV45 in different 
regions of the brain, the extent and distribution of beta-amyloid 
plaques in living AD patients can be determined. This imaging 
technique has the potential to improve early diagnosis and 
monitoring of AD, as well as to facilitate the development of new 
treatments for this devastating disease. PET imaging with AV45 is 
a valuable tool for AD research, providing a non-invasive and 
accurate way to visualize and quantify beta-amyloid accumulation 
in the brain [19]. 

    2.1.3 Multimodal data 

MRI and PET provide complementary information [20] 
about different aspects of brain structure and function. MRI can 
provide detailed structural information about brain regions and 
their integrity, while PET can provide information about functional 
activity, metabolism, and the presence of specific biomarkers 
associated with AD, such as amyloid plaques and tau tangles. 
Combining these modalities allows for a more comprehensive 
assessment of brain changes associated with AD, potentially 
leading to improved accuracy and reliability of AD detection. By 
using multiple modalities, the strengths of each modality can be 
leveraged to compensate for the limitations of others, leading to 
improved overall performance in detecting AD. For example, PET 
can provide high specificity in detecting the presence of amyloid 
plaques, which are a hallmark of AD, while MRI can provide 
information about brain atrophy, which is associated with disease 
progression. 

Combining multiple modalities can enhance the 
sensitivity and specificity of AD detection [21, 22]. By using 
multiple modalities, the strengths of each modality can be 
leveraged to compensate for the limitations of others, leading to 
improved overall performance in detecting AD. For example, PET 
can provide high specificity in detecting the presence of amyloid 
plaques, which are a hallmark of AD, while MRI can provide 



 
 

information about brain atrophy, which is associated with disease 
progression. Different modalities may be affected by different 
sources of variability, such as noise, artifacts, and biases. By 
combining multiple modalities, the impact of such variability can 
be mitigated, leading to more robust and reproducible results. This 
can improve the reliability and confidence of AD detection in 
research and clinical settings. 

2.1.4 EHR Data 
In this study, we utilized the TADPOLE longitudinal 

cohort3, which is part of the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) database. The TADPOLE challenge aimed to 
monitor the disease progression of individuals with Alzheimer's 
Disease through the analysis of various biomarkers such as MRI 
images, cognitive test scores, and clinical measurements. The 
cohort consists of data from ADNI-1, ADNI-2, and ADNI-GO. By 
leveraging this dataset, we aimed to gain insights into the disease 
progression and to develop accurate models that can aid in the early 
diagnosis and treatment of Alzheimer's Disease. The distribution of 
the data in the TADPOLE challenge is shown in the Table 2 
 

Table 2: Distribution of ADNI dataset 

Clinical 
Status 

# of Subjects # of Visits Age (mean ± std dev) 

Male Female Male Female Male Female 

CN 930 970 2126 2084 75.10 ± 5.64 74.42 ± 5.38 

MCI 993 591 4207 2756 73.711 ± 7.11 71.80 ± 7.85 

AD 410 381 884 684 75.56 ± 7.11 73.56 ± 7.11 

 
To predict the AD status using the TADPOLE dataset, 

we focused on six volumetric features extracted from T1-weighted 
MRI scans: ventricles, hippocampus, fusiform gyrus, middle 
temporal gyrus, entorhinal cortex, and whole-brain, as well as 
cognitive test scores including MMSE, ADAS-cog11, and ADAS-
cog13. These specific features were chosen based on previous 
studies. Despite the wealth of biomarkers available in the 
TADPOLE dataset, we chose to focus on these specific features 
based on [15]. 

2.2 System Block Diagram & Overall 
Architecture 

 

Fig 2. Complete architecture 

The proposed architecture in our research paper consists 
of two modules: classification and progression. The classification 
module takes as inputs the MRI and PET scans of the patients, and 
employs 3D convolutional models for feature extraction from each 
scan. The extracted features are then combined using feature fusion 
and passed to a fully connected network for classification output 
prediction. The progression module takes the electronic health 
records (EHR) data of the patients as input, which is preprocessed 
using various techniques discussed in Section 2.5.1. The 
preprocessed data is then fed into two seq-2-seq models: one for 
predicting the next time step and the other for predicting multiple 
future time steps. The encoder layer of these models uses 
comparative analysis of LSTM, TCN, GRU, BiLSTM, and BiGRU, 
and predicts the progression of the disease accordingly. 

2.4 Classification  
2.4.1 Data Preprocessing for MRI and PET 

ADNI dataset provides the preprocessed images obtained using 
methods such as N3 scaling and B1 normalization. B1 
normalization and N3 scaling are two commonly used techniques 
in MRI and PET image processing, which aim to correct for 
intensity inhomogeneity in the images. B1 normalization corrects 
for variations in the radiofrequency (RF) field across the image. 
This normalization technique is particularly important for 
quantitative MRI analyses, such as voxel-based morphometry 
(VBM), where accurate measurement of gray matter, white matter, 
and cerebrospinal fluid is critical. N3 scaling corrects for intensity 
inhomogeneity caused by scanner or acquisition-related factors. 
These techniques are important preprocessing steps in MRI and 
PET image analysis as they help to improve the accuracy and 
reliability of subsequent image analyses. This technique is 
particularly useful for improving the quality of PET images, which 
often suffer from intensity inhomogeneity due to the limited 
sensitivity of the PET scanner. The resulting images were of 
different dimensions, hence, we rescaled the images to 
(1,60,128,128) so that it matches the input dimension of the model. 

 



 

2.4.2 Algorithms for Classification 
 
We drew inspiration from the resnet50 model, we modified the 

structure by changing the filter sizes to 256 and 512 from 1024 and 
2056 to reduce the complexity and training time. We added dense 
layers in the end of the network with Relu and also sigmoid 
activation with 3 outputs to match the labels. The model was 
initialized with random weights. Random initialization is one way 
of performing symmetry breaking, which is the act of preventing 
all of the weights. As a result, symmetry is broken, and each neuron 
no longer performs the same computation, we can get better results 
each time we train the network.In the machine learning model from 
being the same. The Resnet model was proposed to solve the issue 
of diminishing gradient. The idea is to skip the connection and pass 
the residual to the next layer so that the model can continue to train. 
With Resnet models, CNN models can go deeper and deeper.This 
is one of the main reasons we went forward with Resnet. The model 
has 3 conv blocks , each block has 3 conv layers with increasing 
sizes of filters, 16,64,128,256 respectively. We have also used 
average pooling and dropout layers to counter overfitting. After 
hyper parameterizing epochs and filter sizes, we came to the 
conclusion to implement the filter sizes of 64,128,256 for deeper 
conv blocks and train it for 50 epochs. Our main goal was to reduce 
computation cost and improve performance of the classifier.This 
heatmap shows the distribution of accuracy based on tuning the 
hyperparameter for the classification model. 

 
Fig.3 Classification architecture 

 

  
Fig. 4  Epochs vs filter size accuracy values 

 
Feature concatenation [10] is often used when working 

with multimodal data because it allows us to combine features from 
multiple modalities into a single feature vector, which can then be 
used as input to a machine learning model. By doing this, we can 
leverage information from multiple modalities to improve the 
performance of the model. By using feature concatenation, the 
model can learn to recognize patterns in the combined feature 
vector that are not apparent when looking at the features from each 
modality separately. Previous works such as [24] proved that it can 
improve the performance of the model, especially when the 
modalities are complementary and provide different types of 
information. 
 

 
2.4.3 Performance Metrics for classification and 

Regression 

For the AD classification problem, performance metrics 
such as accuracy, precision, recall, and F1 score are used to 
evaluate the performance of the model. Accuracy is the most 
commonly used metric and is defined as the percentage of correctly 
classified instances. However, since the dataset is imbalanced 
(different number of images for each of the 3 classes (CN, MCI, 
AD), accuracy can be misleading and not reflect the true 
performance of the model. 

Accuracy: (TP + TN) / (TP + TN + FP + FN) 

Precision is the metric that measures the proportion of 
correctly predicted instances among the instances that were 
predicted to belong to a particular class. Recall, on the other hand, 
measures the proportion of correctly predicted instances among the 
instances that actually belong to a particular class. Precision and 
recall are especially important in an imbalanced dataset as they 
provide insights into how well the model is performing for the 
minority class. 



 
 

Precision: TP / (TP + FP) 

Recall: TP / (TP + FN) 

where TP is the number of true positives, TN is the number of true 
negatives, FP is the number of false positives, and FN is the number 
of false negatives. 

The F1 score is a weighted average of precision and 
recall, which takes into account both metrics and provides a more 
balanced evaluation of the model. It is calculated as the harmonic 
mean of precision and recall, and ranges from 0 to 1, with higher 
values indicating better performance. 

F1 score: 2 * (precision * recall) / (precision + recall) 

2.5 Progression (Discuss the algorithms and 
architectures) 

2.5.1 Data Preprocessing for EHR 
 

In our study, we performed several preprocessing 
techniques to prepare the data for analysis. We normalized the 
volumetric MRI features using each subject's intracranial volume 
(ICV) to account for inter-subject variability in brain size. We also 
conducted feature-wise linear normalization based on the min/max 
values to standardize the range of the features. To handle irregular 
time intervals between visits, we added a new feature called Time 
Difference. We split the data into a training set and a test set in a 
ratio of 7:3. 

We also observed that there were many missing observations in 
the MRI biomarkers and clinical labels of the TADPOLE 
longitudinal cohort dataset. To address this issue, we considered the 
mean imputation method, which was also used by Mohammad Al 
Olaimat et al. However, we also reviewed and compared different 
imputation techniques, such as zero imputation, most recent 
observation imputation, and k-nearest neighbor imputation, which 
were discussed by Wonsik Jung et al. Ultimately, we decided to try 
out the Miss-Forest (Random Forest Imputation Algorithm) for our 
project due to its advantages, which include handling missing 
values in large datasets, providing unbiased estimates of missing 
values, and preserving the distribution of the original data. 
 

 
2.5.2 Algorithms for Progression 
 
2.5.2.1  Seq-2-seq for next time step: 
The Seq-2-seq model for Next time step prediction is a machine 

learning system that predicts a patient's next visit's conversion to 
Alzheimer's disease (AD). A recurrent neural network (RNN) and 
a multi-layer perceptron (MLP) model are the two key components 
of the approach. The RNN is trained to learn a latent representation 
of the patient's longitudinal clinical data up to a specific visit. This 
is symbolized by the symbol xt and is represented by Eq 1. The 
MLP model then combines the cross-sectional demographic data 
(D) and xt to forecast AD conversion in the following visit. Eq 2 

represents this prediction, which is denoted as y′. Trainable linear 
transformation matrices W1 and W2, as well as bias vectors b1 and 
b2, are used to train the model.The sigmoid function is denoted by 
𝜎. 

 
�̂�𝑡 = 𝑅𝑁𝑁(𝑋)           (1) 

𝑦′ = 𝜎 (𝑊1(𝑅𝑒𝐿𝑈 (𝑊2(�̂�𝑡 ⊕ 𝐷) +𝑏2)) + 𝑏1)          (2)  

Fig 5: 

Seq-2-seq for next time step architecture [14] 

2.5.2.2  Seq-2-seq for multiple time steps : 
For multiple future time steps prediction, the Seq-2-seq model 

includes an RNN component that captures a hidden representation 
(xt) of the longitudinal clinical data up to t visits (as indicated in 
Eq 1). This hidden representation is used by the decoder component 
to generate representations for future visits up to n, and the 
resulting representations are used to train an MLP model with the 
cross-sectional demographic data (D) to predict the conversion to 
AD at the (t +n)th visit (as shown in Eq 3). W1 and W2 are the 
trainable linear transformation matrices, b1 and b2 are the bias 
vectors, and is the sigmoid function.  

 
𝑦′= 𝜎 (𝑊1 (𝑅𝑒𝐿𝑈(𝑊2(𝑥𝑡+(𝑛−1) ⊕ 𝐷) + 𝑏2))+𝑏1)                (3) 

 

Fig 6:Seq-2-seq for multiple future time steps architecture [14] 

 

2.5.2.3. Other Algorithms 



 

Temporal convolutional Networks: 

Temporal Convolution Networks (TCN) are useful for 
modeling long-term dependencies in sequences. Two important 
characteristics of the TCN are that (a) the output length is the same 
as the input length, and (b) there is no data leakage from the present 
to the past. TCN mixes 1D Fully Convolutional Networks (FCN) 
with causal convolutions to obtain these characteristics. The dilated 
convolution process captures long-term interdependence by 
allowing for a larger receptive field. TCN may be defined using 
equations (5) and (6), where y represents the input sequence and f 
represents the filter. In the context of Alzheimer's disease 
progression prediction, TCN can be used to model longitudinal data 
from multiple visits of patients. One advantage of TCN over other 
sequence modeling approaches is that it can capture long-term 
dependencies without the vanishing gradient problem that can 
affect RNNs like LSTMs. 

𝐹(𝑢) = 	 (𝑦	 ∗ 𝑏	𝑓)(𝑢) = ∑!"1# 𝑓(𝑗)𝑦$ − 𝑏#   (5) 

𝑜 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑦 + 𝐹(𝑦))    (6) 

 

Fig 7: TCN architecture 

LSTM : 

The Long Short-Term Memory (LSTM) architecture is a 
gated recurrent neural network design that solves the disappearing 
and exploding gradient concerns in RNNs. LSTMs may store 
context information in their internal memory, allowing them to 
properly interpret variable-length sequences. The gated structure of 
the LSTM architecture defines it, with input, output, and forget 
gates controlling the flow of information into and out of the 
memory cell. Standard LSTMs, on the other hand, assume 
uniformly distributed elapsed time, which limits their efficacy for 
longitudinal data with time anomalies. 

GRU:  

The GRU (Gated Recurrent Unit) is a condensed version 
of the LSTM that employs fewer parameters and gating techniques 
to regulate information flow. The GRU cell contains two gates that 
allow it to selectively update and forget information: update and 
reset. Equations that update the hidden state and output based on 
the input and prior hidden state may be used to create the GRU cell, 
just as LSTM. 

BiLSTM:  

An addition to LSTM that involves bidirectional 
processing is called Bidirectional LSTM (BiLSTM). The hidden 
state in a typical LSTM solely depends on the previous inputs in 
the sequence at each time step. BiLSTM, on the other hand, 
analyzes the sequence both forward and backward, combining the 
resultant hidden states to provide a more accurate representation of 
the sequence. Since both forward and backward context 
information can be valuable in a variety of applications, this 
enables BiLSTM to capture both in the sequence. 

BiGRU: 

Bidirectional GRU (BiGRU) is a similar architecture to 
BiLSTM, but uses GRU cells instead of LSTM cells. Like 
BiLSTM, BiGRU processes the sequence in both directions to 
capture forward and backward context information. BiGRU is 
computationally less expensive than BiLSTM, making it a good 
choice for applications where efficiency is a concern. 

3   Results 

3.1 Classification Results 

In order to identify the importance of each of the modality i.e, MRI 
and PET on the overall performance, the model was implemented 
three times i.e using MRI alone, PET alone, using both MRI and 
PET images. The values corresponding to each of the testing 
methods were shown in the Table. xxx. It is evident from the results 
that MRI provides better results compared to PET when 
implemented alone. However, when using multimodal data, it is 
observed that adding PET images helps in the improvement of the 
model. 

Table 3: Comparing the performance of our proposed method vs 
single modal  

 MRI PET MRI+PET 

Accuracy 0.8549 0.6010 0.8858 

Precision 0.8537` 0.4982 0.8858 

Recall 0.8539`` 0.6010 0.8858 

F-1 Score 0.8538 0.4890 0.8832 

 

Fig. 8 Predictability for different models in classification 



 
 

To assess the performance of our model, we compared the results 
of our proposed method with that of the baseline model 
implemented in [bb]. Juan Song, et al implemented the image 
fusion technique to combine both the MRI and PET modalities and 
compared the performance with the other methods such as feature 
fusion, MRI alone, PET alone showing that their model provides 
better accuracy when implemented using UNet. However, using a 
simpler architecture such as ResNet50 and modifying the kernel 
size and dropout rates, we were able to get better accuracy as shown 
in Table. aa compared to their image fusion technique and UNet. 

Table 4. Comparing the performance of our proposed method vs 
other research works  

 MRI PET MRI+PET 

Image fusion + 3D 

CNN 

0.6486 0.6010 0.7454 

Image fusion + 

multiscale 3D CNN 

0.6645 0.5876 0.7152 

Our method ( 

Feature fusion + 

modified resnet) 

0.8539 0.6066 0.8858 

 

3.2 Progression Results 

3.2.1 Results without time difference and 
additional normalization: 

3.2.1.1  Seq2Seq Model for Next Visit 
Results: 

In this study, we evaluated the performance of different 
models for predicting the next visits in longitudinal healthcare data. 
The baseline Seq2Seq model achieved an F1 score of 0.74. 
However, the TCN model outperformed both the baseline and other 
models, achieving an F1 score of 0.75. This can be attributed to the 
architecture's ability to capture long-term dependencies in the data 
without suffering from the vanishing gradient problem that can 
affect recurrent neural networks. The use of causal convolutions 
and residual layers allowed for effective history sizes to be 
achieved, enabling the model to look far into the past to make 
accurate predictions. Overall, our results suggest that TCN is a 
promising approach for predicting the next visit in healthcare data. 

 
Table 5 : Seq2Seq Model for Next Visit Results with time 

difference feature and additional normalization. 
 

Models LSTM TCN GRU BiLSTM BiGRU 

Best 
Confusion 

Matrix 

[[164  52] 
 [ 20  99]] 

[[170  46] 
 [ 20  99]] 

[[161  55] 
 [ 18 101]] 

[[169  47] 
 [ 22  97]] 

 

[[157  59] 
 [ 14 105]] 

 
Precision  0.655 0.683 0.647 0.674 0.640 

Recall 0.832 0.832 0.849 0.815 0.882 

F1- Score 0.733 0.750 0.7345 0.7376 0.7420 

 
3.2.1.2  Seq2Seq Model for Multiple Future Visit 
Results: 

The research investigated the performance of the 
Seq2Seq architecture for multiple future visits in predicting health 
risk. The baseline model achieved a F1 score of 0.74. However, the 
BiLSTM model outperformed the baseline model, achieving a F1 
score of 0.72. This is because the BiLSTM model has the advantage 
of decoding for dynamic time steps, which is useful for predicting 
risk for multiple future time steps. Additionally, it considers the 
past and future time steps while encoding a sequence, resulting in 
a more accurate prediction of health risks. The results of this study 
suggest that the BiLSTM model is an effective approach for 
predicting health risks using sequential data. 

 
Table 6 : Seq2Seq Model for Next Visit Results with time 

difference feature and additional normalization. 
 
Models LSTM TCN GRU BiLSTM BiGRU 

Best 
Confusion 

Matrix 

[[124  57] 
 [ 12  82]] 

 
 

[[123  58] 
 [ 11  83]] 

 
 

[[  6 175] 
 [  3  91]] 

 
 

[[140  41] 
 [ 18  76]] 

 

[[133  48] 
 [ 15  79]] 

Precision  0.590 0.589 0.342 0.649 0.622 

Recall 0.872 0.883 0.968 0.809 0.840 

F1- Score 0.703 0.7063 0.5055 0.720 0.715 

3.2.2 Results with time difference feature and 
additional normalization 

Table 7 : Seq2Seq Model for Next Visit Results with time 
difference feature and additional normalization. 

 
Models LSTM TCN GRU BiLSTM BiGRU 

Best 
Confusion 

Matrix 

[[150  66] 
 [ 14 105]] 

[[150  66] 
 [ 16 103]] 

[[164  52] 
 [ 21  98]] 

[[149  67] 
 [ 17 102]] 

[[165  51] 
 [ 20  99]] 

Precision  0.614 0.609 0.653 0.603 0.66 

Recall 0.882 0.865 0.823 0.857 0.83 

F1- Score 0.724 0.715 0.728 0.7083 0.736 

 
 
Table 8: Seq2Seq Model for  Multiple Future Visits Results with 

time difference feature and additional normalization. 
 

Models LSTM TCN GRU BiLSTM BiGRU 



 

Best 
Confusion 

Matrix 

[[145  36] 
 [ 23  71]] 

[[138  43] 
 [ 19  75]] 

[[120  61] 
 [ 12  82]] 

 

[[126  55] 
 [ 13  81]] 

[[125  56] 
 [ 12  82]] 
 
 

Precision  0.664 0.635 0.573 0.595 0.594 

Recall 0.755 0.797 0.872 0.862 0.872 

F1- Score 0.706 0.707 0.691 0.704 0.706 

 
For the next time step risk prediction, the BiGRU model 

achieved an F-1 score of 73%, while other models performed 
similarly. However, for risk prediction in multiple time steps, all 
models showed similar performance. Based on these results, it was 
found that the time difference feature did not significantly 
contribute to the prediction of AD risk, while MRI biomarkers, PET 
biomarkers, and cognitive assessment scores had a significant 
impact on predicting the risk of AD. These findings suggest that 
incorporating these biomarkers and assessment scores can lead to 
more accurate predictions of AD risk. 
 

 
Fig. 9: Predictability Plot for Risk Prediction for 

next visit 

 

 
Fig. 10: Predictability Plot for Risk Prediction for multiple time 

visits 
 
To evaluate the performance of multiple models implemented for a 
specific task, a predictability plot was generated. The plot 
visualizes the accuracy of each model on a validation dataset and 
an evaluation dataset and allows for easy comparison between the 
models. The results showed that the TCN model outperformed the 
other models, as it achieved higher accuracy on the evaluation 
dataset compared to the other models. This finding suggests that the 
TCN model may be more suitable for the given task and highlights 
its potential as a promising model for future studies. 

 
3.3 MockGUI Setup 
 

In addition to developing a machine learning model for 
Alzheimer's disease (AD) classification and progression, we have 
also implemented a graphical user interface (GUI) to enable 
patients and clinicians to easily interact with the model.  The 
Screenshot of the GUI is shown in Fig. 11.  

 

 
Fig 11: GUI for the better usage of the model 
 
The GUI has been designed with a patient-friendly 

interface, allowing patients to input their electronic health record 
(EHR) data, including MRI and PET biomarkers, cognitive 
assessment scores, and upload their scan reports for MRI and PET. 
The model then generates a prediction of the patient's current AD 
status and assesses their risk for developing AD in the future. To 
generate risk predictions for future visits, the user is prompted to 
input the number of future visits for which they would like to 
receive risk predictions. The model then outputs the predicted risk 
for AD for each future visit. 

The GUI provides an accessible and user-friendly 
platform for patients and clinicians to receive accurate AD 
predictions and risk assessments based on their individual data. 
This approach is particularly valuable for early diagnosis and 
intervention, as it enables patients to track their disease progression 
and receive timely treatment. Moreover, this technology can 
facilitate the efficient management of healthcare resources, as 
clinicians can use predictions to prioritize patient care and optimize 
treatment plans. 
 
4 Conclusion: 
 

In this research, we aimed to investigate the effectiveness 
of multimodal data (MRI + PET) compared to single modality 
(MRI or PET) in classifying patients with MCI and AD. Our 
findings demonstrated that classification performance was efficient 
when considering multimodal data. Furthermore, MRI and PET 
provided complementary features that helped differentiate patients 
with MCI and AD. We also implemented two Seq2Seq 
architectures to predict the progression of AD in the next time step 
and multiple time steps. The TCN model performed best for the 
next time step prediction, while the BiLSTM model performed best 
for multiple time steps. Our study also showed that the addition of 
the time difference feature did not significantly contribute to the 
prediction of AD risk. However, MRI biomarkers, PET biomarkers, 
and cognitive assessment scores were found to be important 
predictors of AD risk. These results highlight the importance of 



 
 

multimodal data and specific biomarkers in accurately predicting 
the risk of AD. 
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